SI-TECHNOLOGY
  • Home
  • SIJ Anatomy Pain Identification Posterior Inferior Access Posterior Inferior Access Cartilage Identification
  • SI-DESIS
  • IN DEVELOPMENT
  • Contact
  • US12318298B2 US12150733B2 US11998222B2 US11950813B2 US11877931B2 US11376026B2 US11284798B2 US11213325B2 US11172939B2 US11129718B2 US10646236B2 US10646258B2 US10603055B2 US10596004B2 US10596003B2 US10548643B2 US10517734B2 US10492915B2 US10492802B2 US10492688B2 US10441318B2 US10433880B2 US10383664B2 US10335197B2 US10314710B2 US10292720B2 US10265176B2 US10245087B2 US10159573B2 US10154861B2 US10136995B2 US10130477B2 US10064728B2 US10064727B2 US10058430B2 US10034676B2 US9949835B2 US9931212B1 US9833320B2 US9833265B2 US9826986B2 US9820783B2 US9801546B2 US9795419B2 US9795396B2 US9788961B2 US9757154B2 US9717539B2 US9700356B2 US9603638B2 US9554909B2 US9510872B2 US9421109B2 US9381045B2 US9333090B2 US9017407B2 US8979928B2 US8808377B2 AU2019216659B2 AU2017254857B2 AU2016204937B2 AU2012312658B2 AU2014204494B2 AU2011205597B2 CA2849095 CA2787152 CA3002234 CN102361601B CN105287056B EP2720628B1 EP2967651B1 EP2523633B1 HK1219646 HK1165984 IL231588 IL220892 JP6131371B2 JP5956630B2 JP5710646B2 KR101754138B1 SG182463 TWI599348
  • Materials
SI-TECHNOLOGY
  • Home/
  • About SIJ Dysfunction/
    • SIJ Anatomy
    • Pain Identification
    • Posterior Inferior Access
    • Posterior Inferior Access Cartilage Identification
  • SI-DESIS/
  • IN DEVELOPMENT/
  • Contact/
  • Patents/
    • US12318298B2
    • US12150733B2
    • US11998222B2
    • US11950813B2
    • US11877931B2
    • US11376026B2
    • US11284798B2
    • US11213325B2
    • US11172939B2
    • US11129718B2
    • US10646236B2
    • US10646258B2
    • US10603055B2
    • US10596004B2
    • US10596003B2
    • US10548643B2
    • US10517734B2
    • US10492915B2
    • US10492802B2
    • US10492688B2
    • US10441318B2
    • US10433880B2
    • US10383664B2
    • US10335197B2
    • US10314710B2
    • US10292720B2
    • US10265176B2
    • US10245087B2
    • US10159573B2
    • US10154861B2
    • US10136995B2
    • US10130477B2
    • US10064728B2
    • US10064727B2
    • US10058430B2
    • US10034676B2
    • US9949835B2
    • US9931212B1
    • US9833320B2
    • US9833265B2
    • US9826986B2
    • US9820783B2
    • US9801546B2
    • US9795419B2
    • US9795396B2
    • US9788961B2
    • US9757154B2
    • US9717539B2
    • US9700356B2
    • US9603638B2
    • US9554909B2
    • US9510872B2
    • US9421109B2
    • US9381045B2
    • US9333090B2
    • US9017407B2
    • US8979928B2
    • US8808377B2
    • AU2019216659B2
    • AU2017254857B2
    • AU2016204937B2
    • AU2012312658B2
    • AU2014204494B2
    • AU2011205597B2
    • CA2849095
    • CA2787152
    • CA3002234
    • CN102361601B
    • CN105287056B
    • EP2720628B1
    • EP2967651B1
    • EP2523633B1
    • HK1219646
    • HK1165984
    • IL231588
    • IL220892
    • JP6131371B2
    • JP5956630B2
    • JP5710646B2
    • KR101754138B1
    • SG182463
    • TWI599348
  • Materials/
SI-TECHNOLOGY

Surgeon Inspired. Superior Innovation.

US9795419B2

SI-TECHNOLOGY
  • Home/
  • About SIJ Dysfunction/
    • SIJ Anatomy
    • Pain Identification
    • Posterior Inferior Access
    • Posterior Inferior Access Cartilage Identification
  • SI-DESIS/
  • IN DEVELOPMENT/
  • Contact/
  • Patents/
    • US12318298B2
    • US12150733B2
    • US11998222B2
    • US11950813B2
    • US11877931B2
    • US11376026B2
    • US11284798B2
    • US11213325B2
    • US11172939B2
    • US11129718B2
    • US10646236B2
    • US10646258B2
    • US10603055B2
    • US10596004B2
    • US10596003B2
    • US10548643B2
    • US10517734B2
    • US10492915B2
    • US10492802B2
    • US10492688B2
    • US10441318B2
    • US10433880B2
    • US10383664B2
    • US10335197B2
    • US10314710B2
    • US10292720B2
    • US10265176B2
    • US10245087B2
    • US10159573B2
    • US10154861B2
    • US10136995B2
    • US10130477B2
    • US10064728B2
    • US10064727B2
    • US10058430B2
    • US10034676B2
    • US9949835B2
    • US9931212B1
    • US9833320B2
    • US9833265B2
    • US9826986B2
    • US9820783B2
    • US9801546B2
    • US9795419B2
    • US9795396B2
    • US9788961B2
    • US9757154B2
    • US9717539B2
    • US9700356B2
    • US9603638B2
    • US9554909B2
    • US9510872B2
    • US9421109B2
    • US9381045B2
    • US9333090B2
    • US9017407B2
    • US8979928B2
    • US8808377B2
    • AU2019216659B2
    • AU2017254857B2
    • AU2016204937B2
    • AU2012312658B2
    • AU2014204494B2
    • AU2011205597B2
    • CA2849095
    • CA2787152
    • CA3002234
    • CN102361601B
    • CN105287056B
    • EP2720628B1
    • EP2967651B1
    • EP2523633B1
    • HK1219646
    • HK1165984
    • IL231588
    • IL220892
    • JP6131371B2
    • JP5956630B2
    • JP5710646B2
    • KR101754138B1
    • SG182463
    • TWI599348
  • Materials/

US PATENT 9,795,419 B2         SPINAL STABILIZATION SYSTEM

A spinal stabilization system and method are provided for treating a patient's spinal column, for maintaining preselected spacing and movement between adjacent vertebrae in a spinal column, and for providing overall stability thereto. The system includes an interlaminar member positioned in the space intermediate a first vertebra and the vertebrae positioned immediately below and adjacent to the first vertebra. The interlaminar member is operatively connected to an adjustable support structure and cooperates therewith to maintain the preselected spacing between adjacent vertebrae and to provide overall stability to the spinal column.

US9795419B2cover.jpg

CLAIMS

What is claimed is: 

1. A spinal stabilization system for treating a spinal column having a first vertebra and a second vertebra, the system comprising:

an interlaminar member adapted to be positioned between the first vertebra and the second vertebra; the interlaminar member including a U-shaped body having a midsection, and two spaced apart end portions, and a pair of juxtaposed legs extending substantially parallel to one another from the U-shaped body, each of the pair of juxtaposed legs having a first end connected to one of the two respective spaced apart end portions of the U-shaped body, each leg including a second end located opposite the first end;

a support structure operatively connected to the interlaminar member, the support structure including a T-shaped frame member operatively connected to the interlaminar member and extending generally downwardly therefrom, the T-shaped frame member including an elongate body having first and second end portions, the first end portion of the elongate body being operatively connected to the interlaminar member at the second end of one of the pair of juxtaposed legs, and an elongate cross member having first and second end portions and a midpoint, the elongate cross member being operatively connected approximately at the midpoint to the second end portion of the elongate body. 

2. The system of claim 1 further including first and second guide rods adjustably secured to the first and second ends of the elongate cross member respectively. 

3. The system of claim 2 where each of the first and second guide rods includes an upper and a lower end, each of the upper and lower ends having a securing device slideably positioned thereon, each securing device being structured and arranged to be secured to a vertebra in the spinal column. 

4. The system of claim 2, wherein each of the first and second end portions of the elongate cross member further includes an aperture formed therein configured to pivotably and/or translatably receive a respective one of the first and second guide rods and a fastener adapted to the respective one of the first and second guide rods in a preselected position. 

5. The system of claim 1, wherein the elongate body includes at least one linear rack, the rack being structured and arranged to progressively extend the distance between the first and second end portions of the elongate body of the T-shaped frame member. 

6. The system of claim 5, further including a gear mechanism operatively connected to the at least one linear rack, the gear mechanism and the at least one linear rack forming a ratchet device configured to permit the progressive extension. 

7. The system of claim 1 wherein the support structure includes a pair of support members secured to the interlaminar member at one of the pair of juxtaposed legs, the leg being opposite the leg to which the elongate body is attached, the support members extending upwardly therefrom in a direction substantially parallel to one another. 

8. The system of claim 1 wherein the interlaminar member is structured and arranged to fit tightly between the first vertebra and the second vertebra. 

9. The system of claim 1, wherein the midsection is elastic. 

10. The system of claim 1, wherein the support structure and the interlaminar member are integrally formed from a single piece of material. 

11. A system for treating a patient's spinal column, the system comprising:

a spinal stabilization system including an interlaminar member adapted to be positioned between a first vertebra and a second vertebra in a spinal column; the interlaminar member including a U-shaped body having a midsection, and two spaced apart end portions, and a pair of juxtaposed legs extending substantially parallel to one another from one of the respective ends in a direction generally outwardly away from the spinal column;

a support structure operatively connected to the interlaminar member and adapted to be connected to the first vertebra and at least one vertebra positioned below the first vertebra in the spinal column, the support structure including a T-shaped frame member operatively connected to the interlaminar member and extending generally downwardly therefrom in a direction substantially parallel to the direction of the spinal column, the T-shaped frame member including an elongate body having first and second end portions, the first end portion being operatively connected to the interlaminar member, and an elongate cross member having first and second end portions and a midpoint, the elongate cross member being operatively connected approximately at the midpoint to the second end portion of the body and

an insertion tool configured to reversibly secure to a tool engagement portion of the spinal stabilization system, the insertion tool being adapted to permit a surgeon to grasp the system with the insertion tool whereby implantation of the system in the patient's spinal column is facilitated. 

12. The system of claim 11, wherein the insertion tool comprises a pair of pliers or hemostats. 

13. The system of claim 12, wherein the tool engagement portion includes a threaded portion and wherein the insertion tool includes a threaded portion configured to reversibly secure to the threaded portion of the tool engagement portion of the spinal stabilization system. 

14. The system of claim 13, wherein the insertion tool includes a cannulated shaft and a retainer shaft housed substantially within the cannulated shaft, the retainer shaft including a distal end and a proximal end opposite the distal end, the distal end of the retainer shaft comprising the threaded portion thereof and the proximal end of the retainer shaft comprising a handle. 

15. A spinal stabilization system comprising:

an interlaminar member adapted to be positioned between a first vertebra and a second vertebra in a spinal column; the interlaminar member including a U-shaped body having a midsection, and two spaced apart end portions, and a pair of juxtaposed legs extending substantially parallel to one another from one of the respective ends in a direction generally outwardly away from the spinal column;

a support structure operatively connected to the interlaminar member, the first vertebra and at least one vertebra positioned below the first vertebra in the spinal column, the support structure including a T-shaped frame member operatively connected to the interlaminar member and extending generally downwardly therefrom in a direction substantially parallel to the direction of the spinal column, the T-shaped frame member including an elongate body having first and second end portions, the first end portion being operatively connected to the interlaminar member, and an elongate cross member having first and second end portions and a midpoint, the elongate cross member being operatively connected approximately at the midpoint to the second end portion of the body;

wherein the pair of juxtaposed legs comprises an uppermost leg and a lowermost leg, the first end portion of the elongate body being operatively connected to the interlaminar member at the lowermost leg and wherein the uppermost leg is longer that the lowermost leg. 

16. The system of claim 15, wherein the uppermost leg forms a handle adapted to facilitate insertion and positioning of the system during surgery. 

17. A spinal stabilization system for treating a spinal column having a first vertebra and a second vertebra positioned adjacent the first vertebra, the system comprising:

an interlaminar member adapted to be positioned between the first vertebra and the second vertebra; the interlaminar member including a U-shaped body having a midsection, and two spaced apart end portions, and a pair of juxtaposed legs, each leg having a first end connected at each spaced apart end portion, respectively, and extending generally parallel to one another from each one of the respective ends and each leg having a second end opposite the first end;

a support structure operatively connected to the interlaminar member, the support structure including a T-shaped frame member operatively connected to the interlaminar member and extending generally downwardly therefrom, the T-shaped frame member including an elongate body having first and second end portions, the first end portion of the elongate body being operatively connected to the interlaminar member, and an elongate cross member having first and second end portions and a midpoint, the elongate cross member being operatively connected approximately at the midpoint to the second end portion of the body of the elongate body;

wherein the T-shaped frame is defined by a first plane, the U-shaped body is defined in a second plane and wherein an arrangement between the T-shaped frame and U-shaped body is such that the first plane is generally perpendicular to the second plane.

  • Home/
  • About SIJ Dysfunction/
    • SIJ Anatomy
    • Pain Identification
    • Posterior Inferior Access
    • Posterior Inferior Access Cartilage Identification
  • SI-DESIS/
  • IN DEVELOPMENT/
  • Contact/
  • Patents/
    • US12318298B2
    • US12150733B2
    • US11998222B2
    • US11950813B2
    • US11877931B2
    • US11376026B2
    • US11284798B2
    • US11213325B2
    • US11172939B2
    • US11129718B2
    • US10646236B2
    • US10646258B2
    • US10603055B2
    • US10596004B2
    • US10596003B2
    • US10548643B2
    • US10517734B2
    • US10492915B2
    • US10492802B2
    • US10492688B2
    • US10441318B2
    • US10433880B2
    • US10383664B2
    • US10335197B2
    • US10314710B2
    • US10292720B2
    • US10265176B2
    • US10245087B2
    • US10159573B2
    • US10154861B2
    • US10136995B2
    • US10130477B2
    • US10064728B2
    • US10064727B2
    • US10058430B2
    • US10034676B2
    • US9949835B2
    • US9931212B1
    • US9833320B2
    • US9833265B2
    • US9826986B2
    • US9820783B2
    • US9801546B2
    • US9795419B2
    • US9795396B2
    • US9788961B2
    • US9757154B2
    • US9717539B2
    • US9700356B2
    • US9603638B2
    • US9554909B2
    • US9510872B2
    • US9421109B2
    • US9381045B2
    • US9333090B2
    • US9017407B2
    • US8979928B2
    • US8808377B2
    • AU2019216659B2
    • AU2017254857B2
    • AU2016204937B2
    • AU2012312658B2
    • AU2014204494B2
    • AU2011205597B2
    • CA2849095
    • CA2787152
    • CA3002234
    • CN102361601B
    • CN105287056B
    • EP2720628B1
    • EP2967651B1
    • EP2523633B1
    • HK1219646
    • HK1165984
    • IL231588
    • IL220892
    • JP6131371B2
    • JP5956630B2
    • JP5710646B2
    • KR101754138B1
    • SG182463
    • TWI599348
  • Materials/

SI-TECHNOLOGY

SI-TECHNOLOGY, LLC is an orthopedic medical device company currently developing new techniques and implants as part of the patented SI-TECHNOLOGY™ SI-DESIS™ Sacroiliac Joint Implant System to help assist physicians address the need for treatment, fixation and proper fusion of painful and dysfunctional sacroiliac joints (SIJ). Those suffering from SIJ pain represent a large group of patients, perhaps 10%-30% of those with low back pain, and until recently sacroiliac joint disease was a condition physicians frequently overlooked or even misdiagnosed.

U.S. Patent Nos. 8,808,377 8,979,928 9,017,407 9,333,090 9,381,045 9,421,109 9,510,872 9,554,909 9,603,638 9,700,356 9,717,539 9,757,154 9,788,961 9,795,396 9,795,419 9,801,546 9,820,783 9,826,986 9,833,265 9,833,320 9,931,212 9,949,835 10,034,676 10,058,430 10,064,727 10,064,728 10,130,477 10,136,995 10,154,861 10,159,573 10,245,087 10,265,176 10,292,720 10,314,710 10,335,197 10,383,664 10,433,880 10,441,318 10,492,688 10,492,802 10,492,915 10,517,734 10,548,643 10,596,003 10,596,004 10,603,055 10,646,236 10,646,258 11,129,718 11,172,939 11,213,325 11,284,798 11,376,026 11,877,931 11,950,813 11,998,222 12,150,733 and 12,318,298; EP Patent Nos. 2523633 (FR, DE, IE, NL, ES, CH, and GB) 2720628 (FR, DE and GB) 2758002 (FR, DE and GB) and 2967651 (FR, DE and GB); AU Patent Nos. 2011205597 2012312658 2014204494 2016204937 2017254857 and 2019216659; CA Patent Nos. 2787152 2849095 and 3002234; CN Patent Nos. 102361601 and 105287056; HK Patent Nos. 1165984 and 1219646; IL Patent Nos. 220892 231588 and 243911; JP Patent Nos. 5710646 5956630 and 6131371; KR 101754138; MX Patent No. 327506; SG Patent No. 182463; TW Patent No. I599348; pending U.S. and foreign patent applications. The SI Logo, SI-TECHNOLOGY, SI-Dx, PELFIX, SI-MOTION, SI-DESIS, SI-DESIS X and their respective icons are trademarks of JCBD, LLC and are used by permission.©2025 SI-TECHNOLOGY, LLC. All rights reserved.