SI-TECHNOLOGY
  • Home
  • SIJ Anatomy Pain Identification Posterior Inferior Access Posterior Inferior Access Cartilage Identification
  • SI-DESIS
  • IN DEVELOPMENT
  • Contact
  • US12318298B2 US12150733B2 US11998222B2 US11950813B2 US11877931B2 US11376026B2 US11284798B2 US11213325B2 US11172939B2 US11129718B2 US10646236B2 US10646258B2 US10603055B2 US10596004B2 US10596003B2 US10548643B2 US10517734B2 US10492915B2 US10492802B2 US10492688B2 US10441318B2 US10433880B2 US10383664B2 US10335197B2 US10314710B2 US10292720B2 US10265176B2 US10245087B2 US10159573B2 US10154861B2 US10136995B2 US10130477B2 US10064728B2 US10064727B2 US10058430B2 US10034676B2 US9949835B2 US9931212B1 US9833320B2 US9833265B2 US9826986B2 US9820783B2 US9801546B2 US9795419B2 US9795396B2 US9788961B2 US9757154B2 US9717539B2 US9700356B2 US9603638B2 US9554909B2 US9510872B2 US9421109B2 US9381045B2 US9333090B2 US9017407B2 US8979928B2 US8808377B2 AU2019216659B2 AU2017254857B2 AU2016204937B2 AU2012312658B2 AU2014204494B2 AU2011205597B2 CA2849095 CA2787152 CA3002234 CN102361601B CN105287056B EP2720628B1 EP2967651B1 EP2523633B1 HK1219646 HK1165984 IL231588 IL220892 JP6131371B2 JP5956630B2 JP5710646B2 KR101754138B1 SG182463 TWI599348
  • Materials
SI-TECHNOLOGY
  • Home/
  • About SIJ Dysfunction/
    • SIJ Anatomy
    • Pain Identification
    • Posterior Inferior Access
    • Posterior Inferior Access Cartilage Identification
  • SI-DESIS/
  • IN DEVELOPMENT/
  • Contact/
  • Patents/
    • US12318298B2
    • US12150733B2
    • US11998222B2
    • US11950813B2
    • US11877931B2
    • US11376026B2
    • US11284798B2
    • US11213325B2
    • US11172939B2
    • US11129718B2
    • US10646236B2
    • US10646258B2
    • US10603055B2
    • US10596004B2
    • US10596003B2
    • US10548643B2
    • US10517734B2
    • US10492915B2
    • US10492802B2
    • US10492688B2
    • US10441318B2
    • US10433880B2
    • US10383664B2
    • US10335197B2
    • US10314710B2
    • US10292720B2
    • US10265176B2
    • US10245087B2
    • US10159573B2
    • US10154861B2
    • US10136995B2
    • US10130477B2
    • US10064728B2
    • US10064727B2
    • US10058430B2
    • US10034676B2
    • US9949835B2
    • US9931212B1
    • US9833320B2
    • US9833265B2
    • US9826986B2
    • US9820783B2
    • US9801546B2
    • US9795419B2
    • US9795396B2
    • US9788961B2
    • US9757154B2
    • US9717539B2
    • US9700356B2
    • US9603638B2
    • US9554909B2
    • US9510872B2
    • US9421109B2
    • US9381045B2
    • US9333090B2
    • US9017407B2
    • US8979928B2
    • US8808377B2
    • AU2019216659B2
    • AU2017254857B2
    • AU2016204937B2
    • AU2012312658B2
    • AU2014204494B2
    • AU2011205597B2
    • CA2849095
    • CA2787152
    • CA3002234
    • CN102361601B
    • CN105287056B
    • EP2720628B1
    • EP2967651B1
    • EP2523633B1
    • HK1219646
    • HK1165984
    • IL231588
    • IL220892
    • JP6131371B2
    • JP5956630B2
    • JP5710646B2
    • KR101754138B1
    • SG182463
    • TWI599348
  • Materials/
SI-TECHNOLOGY

Surgeon Inspired. Superior Innovation.

US10517734B2

SI-TECHNOLOGY
  • Home/
  • About SIJ Dysfunction/
    • SIJ Anatomy
    • Pain Identification
    • Posterior Inferior Access
    • Posterior Inferior Access Cartilage Identification
  • SI-DESIS/
  • IN DEVELOPMENT/
  • Contact/
  • Patents/
    • US12318298B2
    • US12150733B2
    • US11998222B2
    • US11950813B2
    • US11877931B2
    • US11376026B2
    • US11284798B2
    • US11213325B2
    • US11172939B2
    • US11129718B2
    • US10646236B2
    • US10646258B2
    • US10603055B2
    • US10596004B2
    • US10596003B2
    • US10548643B2
    • US10517734B2
    • US10492915B2
    • US10492802B2
    • US10492688B2
    • US10441318B2
    • US10433880B2
    • US10383664B2
    • US10335197B2
    • US10314710B2
    • US10292720B2
    • US10265176B2
    • US10245087B2
    • US10159573B2
    • US10154861B2
    • US10136995B2
    • US10130477B2
    • US10064728B2
    • US10064727B2
    • US10058430B2
    • US10034676B2
    • US9949835B2
    • US9931212B1
    • US9833320B2
    • US9833265B2
    • US9826986B2
    • US9820783B2
    • US9801546B2
    • US9795419B2
    • US9795396B2
    • US9788961B2
    • US9757154B2
    • US9717539B2
    • US9700356B2
    • US9603638B2
    • US9554909B2
    • US9510872B2
    • US9421109B2
    • US9381045B2
    • US9333090B2
    • US9017407B2
    • US8979928B2
    • US8808377B2
    • AU2019216659B2
    • AU2017254857B2
    • AU2016204937B2
    • AU2012312658B2
    • AU2014204494B2
    • AU2011205597B2
    • CA2849095
    • CA2787152
    • CA3002234
    • CN102361601B
    • CN105287056B
    • EP2720628B1
    • EP2967651B1
    • EP2523633B1
    • HK1219646
    • HK1165984
    • IL231588
    • IL220892
    • JP6131371B2
    • JP5956630B2
    • JP5710646B2
    • KR101754138B1
    • SG182463
    • TWI599348
  • Materials/

US PATENT 10,517,734 B2

SINGLE IMPLANT SACROILIAC JOINT FUSION SYSTEM USING A POSTERIOR APPROACH FOR MINIMAL TISSUE DISRUPTION

A method for preparing a sacroiliac joint for stabilization which may include approaching a posterior aspect of the sacroiliac joint inferior to a PSIS with a defect-creating tool assembly, creating a defect in the sacrum and the ilium defined by at least one noncircular cross-sectional shape, delivering an implant having a body with a length extending between proximal and distal ends, the body including at least one cylindrical body with a longitudinal axis and an opening at the proximal end aligned with the longitudinal axis of the cylindrical body, a pattern of openings spaced along the cylindrical body and a planar member coupled with and extending along the cylindrical body. The implant may be implanted with the length generally following a plane of the sacroiliac joint such that it is advanced from a generally posterior to anterior approach while the body of the implant bridges the joint.

US10517734B2cover.jpg

CLAIMS

1. A method for preparing a sacroiliac joint for stabilization, the sacroiliac joint defined between a sacrum and an ilium, the ilium comprising a posterior superior iliac spine (PSIS) and a posterior inferior iliac spine (PIIS), the sacroiliac joint comprising an articular plane defined by an articular boundary, and an extra-articular plane outside the articular boundary, the articular boundary defining an anterior boundary segment at an anterior portion of the articular plane, and a posterior boundary segment at a posterior portion of the articular plane, the articular boundary comprising a superior-posterior corner and an inferior-posterior corner at the posterior portion, the method comprising:

approaching a posterior aspect of the sacroiliac joint with a defect-creating tool assembly comprising a drill bit and a jig comprising first and second drill guide holes configured to guide the drill bit along first and second trajectories, respectively;

creating a defect in the sacrum and the ilium by delivering the drill bit into the sacrum and the ilium via guidance by the first and second drill guide holes of the jig, the defect having a shape defined by at least one noncircular cross-sectional shape in a plane generally perpendicular to a joint plane of the sacroiliac joint; and

delivering an implant into the sacroiliac joint, the implant comprising a first portion of an exterior surface configured to generally match the at least one noncircular cross-sectional shape of the defect created by the defect-creating tool assembly.

2. The method of claim 1, wherein the noncircular cross sectional shape in the plane generally perpendicular to the joint plane of the sacroiliac joint comprises a rectangular shape that bridges across the sacroiliac joint and into the sacrum and the ilium.

3. The method of claim 1, wherein the first portion of the exterior surface of the implant is defined on a first member of the implant that is generally planar.

4. The method of claim 3, wherein the implant further comprises a second member having a second portion of the exterior surface of the implant, the second member comprising a sacral end and an iliac end opposite each other, the sacral end of the second member protruding from a sacral side of the first member, the iliac end of the second member protruding from an iliac side of the first member.

5. The method of claim 4, wherein the first member is positioned centrally between the sacral end and iliac end of the second member.

6. The method of claim 4, wherein the second member is generally planar and oriented generally perpendicular to the first member.

7. The method of claim 1, wherein the implant further comprises an elongate body having a generally cylindrical cross-sectional shape that is transverse to a length of the implant, the elongate body coupled to the first member along at least a portion of the length.

8. The method of claim 7, wherein the elongate body is coupled to the first member at a midpoint thereof such that the first member protrudes from opposite sides of the elongate body.

9. The method of claim 1, wherein creating the defect in the sacrum and the ilium is performed via fluoroscopic guidance.

10. The method of claim 1, wherein the defect-creating tool assembly comprises a plurality of jigs comprising the jig and another jig, and wherein creating the defect in the sacrum and ilium comprises using the another jig from the plurality of jigs to guide a cutting tool selected from the drill bit and an instrument having a chisel tip.

11. The method of claim 10, wherein the jig comprises the first drill hole in a first location, and the another jig comprises a second cutting tool hole in a second location that is different than the first location.

12. The method of claim 1, wherein, in delivering the implant into the sacroiliac joint, the implant passes through an access region defined between the PSIS and PIIS.

13. The method of claim 1, wherein, in delivering the implant into the sacroiliac joint, the implant passes through an access region defined between the superior-posterior corner and the inferior-posterior corner at the posterior portion of the articular boundary.

14. A method for preparing a sacroiliac joint for stabilization, the sacroiliac joint defined between a sacrum and an ilium, the ilium comprising a posterior superior iliac spine (PSIS) and a posterior inferior iliac spine (PIIS), the sacroiliac joint comprising an articular plane defined by an articular boundary, and an extra-articular plane outside the articular boundary, the articular boundary defining an anterior boundary segment at an anterior portion of the articular plane, and a posterior boundary segment at a posterior portion of the articular plane, the articular boundary comprising a superior-posterior corner and an inferior-posterior corner at the posterior portion, the method comprising:

approaching a posterior aspect of the sacroiliac joint with a defect-creating tool assembly comprising a cutting tool, the cutting tool having a distal end and proximal end opposite thereof and an axis extending therebetween; aligning the axis of the cutting tool generally parallel with a plane of the sacroiliac joint;

creating a defect at the sacroiliac joint via the cutting tool contacting at least one of the sacrum, the ilium, and the sacroiliac joint with the axis of the cutting tool generally parallel with the plane of the sacroiliac joint, the defect having a shape defined by at least one noncircular cross-sectional shape in a plane generally perpendicular to the joint plane of the sacroiliac joint; and

delivering an implant into the sacroiliac joint such that a first portion of an exterior surface of the implant is at least partially received within the defect, the first portion of the exterior surface of the implant having a cross-sectional shape that generally matches the at least one noncircular cross-sectional shape of the defect, the implant further comprising a second portion of the exterior surface that extends outward from the first portion and into the sacrum and the ilium, respectively, beyond the defect generally matching the first portion of the exterior surface of the implant.

15. The method of claim 14, wherein the second portion is connected to the first portion and has a cross-sectional geometry which is different from the cross-sectional geometry of the first portion.

16. The method of claim 14, wherein, when the first portion of the exterior surface of the implant is at least partially received within the defect, the second portion bridges across the sacroiliac joint.

17. The method of claim 14, wherein, when the first portion of the exterior surface of the implant is at least partially received within the defect, the second portion extends transversely to the joint plane of the sacroiliac joint.

18. The method of claim 14, wherein the defect-creating tool assembly further comprises a broach, and wherein creating the defect further comprises contacting the at least one of the sacrum, the ilium, and the sacroiliac joint with a distal end of the broach.

19. The method of claim 14, wherein the cutting tool comprises a drill.

20. The method of claim 19, wherein the defect-creating tool assembly further comprises a drill jig configured to guide advancement of the drill, and wherein the drill jig is used to align the axis of the cutting tool generally parallel with a plane of the sacroiliac joint.

21. The method of claim 14, wherein, in delivering the implant into the sacroiliac joint, the implant passes through an access region defined between the PSIS and PIIS.

22. The method of claim 14, wherein, in delivering the implant into the sacroiliac joint, the implant passes through an access region defined between the superior-posterior corner and the inferior-posterior corner at the posterior portion of the articular boundary.

23. A method for preparing a sacroiliac joint for stabilization, the sacroiliac joint defined between a sacrum and an ilium, the ilium comprising a posterior superior iliac spine (PSIS) and a posterior inferior iliac spine (PIIS), the sacroiliac joint comprising an articular plane defined by an articular boundary, and an extra-articular plane outside the articular boundary, the articular boundary defining an anterior boundary segment at an anterior portion of the articular plane, and a posterior boundary segment at a posterior portion of the articular plane, the articular boundary comprising a superior-posterior corner and an inferior-posterior corner at the posterior portion, the method comprising:

approaching a posterior aspect of the sacroiliac joint with a defect-creating tool assembly comprising a drill bit, and first and second jigs, the first jig comprising a first drill guide hole configured to guide the drill bit along a first trajectory, the second jig comprising a second drill guide hole configured to guide the drill bit along a second trajectory that is different than the first trajectory;

creating a defect in the sacrum and the ilium by delivering the drill bit into the sacrum and the ilium via guidance by the first and second drill guide holes of the first and second jigs, respectively, the defect having a shape defined by at least one noncircular cross-sectional shape in a plane generally perpendicular to a joint plane of the sacroiliac joint; and

delivering an implant into the sacroiliac joint, the implant comprising a first portion of an exterior surface configured to generally match the at least one noncircular cross-sectional shape of the defect created by the defect-creating tool assembly.

24. The method of claim 23, wherein the noncircular cross sectional shape in the plane generally perpendicular to the joint plane of the sacroiliac joint comprises a rectangular shape that bridges across the sacroiliac joint and into the sacrum and the ilium.

25. The method of claim 23, wherein the first portion of the exterior surface of the implant is defined on a first member of the implant that is generally planar.

26. The method of claim 25, wherein the implant further comprises a second member having a second portion of the exterior surface of the implant, the second member comprising a sacral end and an iliac end opposite each other, the sacral end of the second member protruding from a sacral side of the first member, the iliac end of the second member protruding from an iliac side of the first member.

27. The method of claim 26, wherein the first member is positioned centrally between the sacral end and iliac end of the second member.

28. The method of claim 26, wherein the second member is generally planar and oriented generally perpendicular to the first member.

29. The method of claim 23, wherein the implant further comprises an elongate body having a generally cylindrical cross-sectional shape that is transverse to a length of the implant, the elongate body coupled to the first member along at least a portion of the length.

30. The method of claim 29, wherein the elongate body is coupled to the first member at a midpoint thereof such that the first member protrudes from opposite sides of the elongate body.

31. The method of claim 23, wherein creating the defect in the sacrum and the ilium is performed via fluoroscopic guidance.

32. The method of claim 23, wherein, in delivering the implant into the sacroiliac joint, the implant passes through an access region defined between the PSIS and PIIS.

33. The method of claim 23, wherein, in delivering the implant into the sacroiliac joint, the implant passes through an access region defined between the superior-posterior corner and the inferior-posterior corner at the posterior portion of the articular boundary.

34. A method for preparing a sacroiliac joint for stabilization, the sacroiliac joint defined between a sacrum and an ilium, the ilium comprising a posterior superior iliac spine (PSIS) and a posterior inferior iliac spine (PIIS), the sacroiliac joint comprising an articular plane defined by an articular boundary, and an extra-articular plane outside the articular boundary, the articular boundary defining an anterior boundary segment at an anterior portion of the articular plane, and a posterior boundary segment at a posterior portion of the articular plane, the articular boundary comprising a superior-posterior corner and an inferior-posterior corner at the posterior portion, the method comprising:

approaching a posterior aspect of the sacroiliac joint with a defect-creating tool assembly comprising a first cutting tool, a second cutting tool, and first and second cutting guides, the first cutting guide comprising a first cutting guide path configured to guide the first cutting tool along a first trajectory, the second cutting guide comprising a second cutting guide path configured to guide the second cutting tool along a second trajectory that is different than the first trajectory;

creating a defect in the sacrum and the ilium by delivering the first cutting tool and second cutting tool into at least one of the sacrum, the ilium, and sacroiliac joint via guidance by the first and second cutting guide holes of the first and second cutting guides, respectively; and

delivering an implant into the sacroiliac joint, the implant comprising a first portion of an exterior surface configured to generally match the cross-sectional shape of the defect created by the defect-creating tool assembly.

35. The method of claim 34, wherein the defect defines a non-circular cross-sectional shape in a plane generally perpendicular to a joint plane of the sacroiliac joint, and wherein the first portion of the exterior surface of the implant is non-circular.

36. The method of claim 34, wherein the first cutting tool is a drill bit and second cutting tool is a broach.

37. The method of claim 34, wherein, in implanting the implant into the sacroiliac joint via the posterior aspect, the implant passes through an access region defined between the superior-posterior corner and the inferior-posterior corner.

38. A method for preparing a sacroiliac joint for stabilization, the sacroiliac joint defined between a sacrum and an ilium, the method comprising:

approaching a posterior aspect of the sacroiliac joint with a defect-creating tool assembly comprising a first cutting tool, a second cutting tool, and first and second cutting guides, the first cutting guide comprising a first cutting guide path configured to guide the first cutting tool along a first trajectory, the second cutting guide comprising a second cutting guide path configured to guide the second cutting tool;

creating a defect in the sacrum and the ilium by delivering the first cutting tool and second cutting tool into at least one of the sacrum, the ilium, and sacroiliac joint via guidance by the first and second cutting guide paths of the first and second cutting guides, respectively, the defect having a shape defined by a cross-sectional shape in a plane generally perpendicular to a joint plane of the sacroiliac joint; and

delivering an implant into the sacroiliac joint, the implant comprising a body extending a length between a proximal end and a distal end, and comprising a longitudinal axis, a first, second, third and fourth members extending along the length generally outwardly from the longitudinal axis, and separated by one another by a first, second, third and fourth angles, the body of the implant further comprising a first portion of an exterior surface configured to generally match the cross-sectional shape of the defect created by the defect-creating tool assembly.

39. The method of claim 38, wherein the first, second, third and fourth members are generally planar members.

40. The method of claim 38, wherein the first, second, third and fourth angles are generally each about 90 degrees.

41. The method of claim 38, wherein each pair of the first and third members, and the second and fourth members are mirror images of each other, and are arranged in a mirrored position relative to the longitudinal axis.

42. A method for preparing a sacroiliac joint for stabilization, the sacroiliac joint defined between a sacrum and an ilium, the method comprising:

approaching a posterior aspect of the sacroiliac joint with a defect-creating tool assembly comprising a first cutting tool and a first cutting guide, the first cutting guide comprising a first cutting guide path configured to guide the first cutting tool along a first trajectory;

creating a defect in the sacrum and the ilium by delivering the first cutting tool into at least one of the sacrum, the ilium, and sacroiliac joint via guidance by the first cutting guide path of the first cutting guide, respectively, the defect having a shape defined by a cross-sectional shape in a plane generally perpendicular to a joint plane of the sacroiliac joint; and

delivering an implant into the sacroiliac joint, the implant comprising a body extending a length between a proximal end and a distal end, and having a generally rectangular volume including a sacral side opposite an iliac side, a top side opposite and bottom side, an opening extending between the top and bottom sides, and first and second passages extending through the proximal end, wherein a location of the first passage is positioned adjacent the sacrum and a location of the second passage is positioned adjacent the ilium, and a first portion of an exterior surface configured to generally match the cross-sectional shape of the defect created by the defect-creating tool assembly; and

delivering a first elongate member into engagement with the sacrum while supported by the first passage, and delivering a second elongate member into engagement with the ilium while supported by the second passage.

  • Home/
  • About SIJ Dysfunction/
    • SIJ Anatomy
    • Pain Identification
    • Posterior Inferior Access
    • Posterior Inferior Access Cartilage Identification
  • SI-DESIS/
  • IN DEVELOPMENT/
  • Contact/
  • Patents/
    • US12318298B2
    • US12150733B2
    • US11998222B2
    • US11950813B2
    • US11877931B2
    • US11376026B2
    • US11284798B2
    • US11213325B2
    • US11172939B2
    • US11129718B2
    • US10646236B2
    • US10646258B2
    • US10603055B2
    • US10596004B2
    • US10596003B2
    • US10548643B2
    • US10517734B2
    • US10492915B2
    • US10492802B2
    • US10492688B2
    • US10441318B2
    • US10433880B2
    • US10383664B2
    • US10335197B2
    • US10314710B2
    • US10292720B2
    • US10265176B2
    • US10245087B2
    • US10159573B2
    • US10154861B2
    • US10136995B2
    • US10130477B2
    • US10064728B2
    • US10064727B2
    • US10058430B2
    • US10034676B2
    • US9949835B2
    • US9931212B1
    • US9833320B2
    • US9833265B2
    • US9826986B2
    • US9820783B2
    • US9801546B2
    • US9795419B2
    • US9795396B2
    • US9788961B2
    • US9757154B2
    • US9717539B2
    • US9700356B2
    • US9603638B2
    • US9554909B2
    • US9510872B2
    • US9421109B2
    • US9381045B2
    • US9333090B2
    • US9017407B2
    • US8979928B2
    • US8808377B2
    • AU2019216659B2
    • AU2017254857B2
    • AU2016204937B2
    • AU2012312658B2
    • AU2014204494B2
    • AU2011205597B2
    • CA2849095
    • CA2787152
    • CA3002234
    • CN102361601B
    • CN105287056B
    • EP2720628B1
    • EP2967651B1
    • EP2523633B1
    • HK1219646
    • HK1165984
    • IL231588
    • IL220892
    • JP6131371B2
    • JP5956630B2
    • JP5710646B2
    • KR101754138B1
    • SG182463
    • TWI599348
  • Materials/

SI-TECHNOLOGY

SI-TECHNOLOGY, LLC is an orthopedic medical device company currently developing new techniques and implants as part of the patented SI-TECHNOLOGY™ SI-DESIS™ Sacroiliac Joint Implant System to help assist physicians address the need for treatment, fixation and proper fusion of painful and dysfunctional sacroiliac joints (SIJ). Those suffering from SIJ pain represent a large group of patients, perhaps 10%-30% of those with low back pain, and until recently sacroiliac joint disease was a condition physicians frequently overlooked or even misdiagnosed.

U.S. Patent Nos. 8,808,377 8,979,928 9,017,407 9,333,090 9,381,045 9,421,109 9,510,872 9,554,909 9,603,638 9,700,356 9,717,539 9,757,154 9,788,961 9,795,396 9,795,419 9,801,546 9,820,783 9,826,986 9,833,265 9,833,320 9,931,212 9,949,835 10,034,676 10,058,430 10,064,727 10,064,728 10,130,477 10,136,995 10,154,861 10,159,573 10,245,087 10,265,176 10,292,720 10,314,710 10,335,197 10,383,664 10,433,880 10,441,318 10,492,688 10,492,802 10,492,915 10,517,734 10,548,643 10,596,003 10,596,004 10,603,055 10,646,236 10,646,258 11,129,718 11,172,939 11,213,325 11,284,798 11,376,026 11,877,931 11,950,813 11,998,222 12,150,733 and 12,318,298; EP Patent Nos. 2523633 (FR, DE, IE, NL, ES, CH, and GB) 2720628 (FR, DE and GB) 2758002 (FR, DE and GB) and 2967651 (FR, DE and GB); AU Patent Nos. 2011205597 2012312658 2014204494 2016204937 2017254857 and 2019216659; CA Patent Nos. 2787152 2849095 and 3002234; CN Patent Nos. 102361601 and 105287056; HK Patent Nos. 1165984 and 1219646; IL Patent Nos. 220892 231588 and 243911; JP Patent Nos. 5710646 5956630 and 6131371; KR 101754138; MX Patent No. 327506; SG Patent No. 182463; TW Patent No. I599348; pending U.S. and foreign patent applications. The SI Logo, SI-TECHNOLOGY, SI-Dx, PELFIX, SI-MOTION, SI-DESIS, SI-DESIS X and their respective icons are trademarks of JCBD, LLC and are used by permission.©2025 SI-TECHNOLOGY, LLC. All rights reserved.