US PATENT 9,717,539 B2 IMPLANTS, SYSTEMS, AND METHODS FOR FUSING A SACROILIAC JOINT
A sacroiliac joint fusion system including a joint implant, an anchor element and a delivery tool including an implant arm, an anchor arm, and a positioning arm coupling the implant arm and the anchor arm. The implant arm includes an implant shaft extending between a proximal end and a distal end of the implant arm. The anchor arm including an anchor shaft extending between a proximal end and a distal end of the anchor arm. The positioning arm coupled with the implant arm at a first end and coupled with the anchor arm at a second end.
CLAIMS
What is claimed is:
1. A method of fusing a sacroiliac joint, the method comprising:
a) providing a joint implant comprising:
i) a body extending between an implant proximal end and an implant distal end; and
ii) a graft window extending non-parallel through the body and extending proximally from the implant distal end to define at least a portion of an opened distal end;
b) providing a delivery tool comprising:
i) an implant arm extending between a proximal implant arm end and a distal implant arm end, the distal implant arm end releasably coupled to the implant proximal end of the joint implant;
ii) an anchor am extending between a proximal anchor arm end and a distal anchor arm end, the distal anchor arm end releasably coupled to a proximal end of an anchor element; and
iii) a positioning arm coupling the implant arm and the anchor arm such that when coupled a delivery arrangement automatically exists such that the anchor element and the joint implant align in a trajectory such that the anchor element will be received within the graft window upon convergence of the anchor element and the joint implant, the implant arm being configured to rotate relative to the positioning arm about a longitudinal axis of the implant arm within a fixed range of rotation;
c) delivering the anchor element transversely through the sacroiliac joint; and
d) subsequent to step c), delivering the joint implant non-transversely into the sacroiliac joint such that the anchor element is positioned within the graft window of the joint implant, the joint implant in an orientation within the sacroiliac joint such that the body and the graft window are a generally within a plane defined by the sacroiliac joint.
2. The method of claim 1, wherein prior to step d) rotating the implant arm about the longitudinal axis and within the fixed range of rotation to select a final implant trajectory that will result in delivery of the joint implant into the sacroiliac joint in the orientation.
3. The method of claim 1, wherein the fixed range of rotation is about 60 degrees of rotation.
4. The method of claim 1, wherein the fixed range of rotation is between about 25 degrees and about 70 degrees.
5. The method of claim 1, wherein the body of the joint implant further comprises a first keel, a second keel opposite the first keel, and a spanning member coupling and extending between the first and second keels at the implant proximal end, wherein the graft window is defined between the first and second keels and the spanning member.
6. The method of claim 5, wherein the body of the joint implant further comprises a pair of wing members coupled with the spanning member and extending generally perpendicularly from a surface of the spanning member that extends between the first and second keels.
7. The method of claim 6, wherein the surface of the spanning member is a planar surface.
8. The method of claim 1, further comprising uncoupling the distal implant arm end from the implant proximal end by rotationally engaging a proximal portion of an implant retainer, the implant retainer extending through a passageway that extends through the implant arm and defining the distal implant arm end that releasably couples with the implant proximal end.
9. The method of claim 1, further comprising uncoupling the distal anchor arm end from the proximal end of the anchor element by rotationally engaging a proximal portion of an anchor retainer, the anchor retainer extending through a passageway that extends through the anchor arm and defining the distal anchor arm end that releasably couples with the proximal end of the anchor element.
10. The method of claim 1, wherein the implant arm includes a cam mechanism and the positioning arm includes a channel, wherein the cam mechanism includes a cam-shape that is configured to only partially rotate within the channel to define the fixed range of rotation.
11. The method of claim 1, wherein in step d) a distal-most depth of delivery of the joint implant is fixed so as to inhibit contact between a surface of the joint implant and the anchor element.
12. The method of claim 11, wherein a proximal portion of the implant arm includes a stop feature that is configured to contact the positioning arm when the distal-most depth is reached.
13. A method of fusing a sacroiliac joint, the method comprising:
a) delivering an anchor element transversely through the sacroiliac joint; and
b) subsequent to step a), delivering a joint implant non-transversely into the sacroiliac joint such that the anchor element and the joint implant are positioned in a pre-determined relationship relative to each other, wherein the pre-determined relationship is provided by a delivery tool comprising:
i) an implant arm including a proximal implant arm end and a distal implant arm end, the distal implant arm end releasably coupled to the joint implant;
ii) an anchor arm including a proximal anchor arm end and a distal anchor arm end, the distal anchor arm end releasably coupled to the anchor element; and
iii) a positioning arm coupling the implant arm and the anchor arm such that when coupled a delivery arrangement automatically exists such that the anchor element and the joint implant align in a trajectory such that the anchor element and the joint implant will not contact each other during delivery of the joint implant non-transversely into the sacroiliac joint, the implant arm being configured to displace relative to the positioning arm within a fixed range of displacement, the displacement comprising at least one of rotation or translation.
14. The method of claim 13, wherein the joint implant comprises: a body extending between an implant proximal end and an implant distal end; and a graft window extending non-parallel through the body and extending proximally from the implant distal end to define at least a portion of an opened distal end.
15. The method of claim 14, wherein upon delivery of the joint implant non-transversely into the sacroiliac joint, the anchor element is positioned within the graft window of the joint implant, the joint implant being in an orientation within the sacroiliac joint such that the body and the graft window are a generally within a plane defined by the sacroiliac joint.
16. The method of claim 14, wherein the trajectory is such that the anchor element will be received within the graft window upon convergence of the anchor element and the joint implant, the implant arm being configured to rotate relative to the positioning arm about a longitudinal axis of the implant arm within a fixed range of rotation.
17. The method of claim 14, wherein upon delivery of the joint implant non-transversely into the sacroiliac joint, the anchor element is positioned outside the graft window of the joint implant, the joint implant being in an orientation within the sacroiliac joint such that the body and the graft window are a generally within a plane defined by the sacroiliac joint.
18. The method of claim 14, wherein the body of the joint implant further comprises a first keel, a second keel opposite the first keel, and a spanning member coupling and extending between the first and second keels at the implant proximal end, wherein the graft window is defined between the first and second keels and the spanning member.
19. The method of claim 18, wherein the body of the joint implant further comprises a pair of wing members coupled with the spanning member and extending generally perpendicularly from a surface of the spanning member that extends between the first and second keels.
20. The method of claim 13, wherein upon delivery of the joint implant non-transversely into the sacroiliac joint, the anchor element is positioned adjacent the joint implant, the joint implant being in an orientation within the sacroiliac joint such that a body of the joint implant is generally within a plane defined by the sacroiliac joint.
21. The method of claim 20, wherein the joint implant comprises: the body extending between an implant proximal end and an implant distal end; and a graft window extending non-parallel through the body and extending proximally from the implant distal end to define at least a portion of an opened distal end.
22. The method of claim 13, wherein upon delivery of the joint implant non-transversely into the sacroiliac joint, the anchor element is positioned adjacent the joint implant.
23. The method of claim 22, wherein the joint implant comprises: a body extending between an implant proximal end and an implant distal end; and a graft window extending non-parallel through the body.
24. The method of claim 23, wherein the body of the joint implant further comprises a first keel, a second keel opposite the first keel, and a spanning member coupling and extending between the first and second keels at the implant proximal end, wherein the graft window is defined between the first and second keels and the spanning member.
25. The method of claim 22, wherein the joint implant comprises: a body extending between an implant proximal end and an implant distal end; and a first keel extending along the body between the implant proximal end and the implant distal end.